Ancient Cheesemaking and Diversified Dairy Herd in Late Neolithic Poland: New Evidence Uncovered by Archaeologists

In a recent study, evidence has been found for cheesemaking using milk from multiple animals during the Late Neolithic period in Poland. This research suggests that early farmers reduced the lactose content in milk by making it into cheese or other dairy products, such as yogurt, and utilized dairy products from several different animals, including cows, sheep, and goats.

During the Neolithic period until the Late Bronze Age, almost everyone in Europe had lactose intolerance. However, genetic mutations became widespread, enabling adults to produce lactase, the enzyme that breaks down lactose in the body. The researchers investigated dairy processing during the Late Neolithic period by identifying high curd-content residues in pottery, indicating cheesemaking, and revealing that multiple dairy species were utilized. By using a multi-stranded proteomic and lipid-analysis approach, the scientists and archaeologists from the Universities of York, Cambridge, Toruń, and Kraków investigated ceramics and deposits on their surface from the site of Sławęcinek in central Poland.

This new development provides evidence that cheesemaking (and other curd-enriching dairy processing) can be directly detected by scrutinizing the proportion of curd proteins, by comparing proteomic data. These results are the first of their kind in Europe and contribute significantly to our understanding of the use of dairy products by some of the earliest farmers in Central Europe.

While previous research has shown that dairy products were widely available in some European regions during this period, the present study provides clear evidence for a diversified dairy herd, including cattle, sheep, and goats, from the analysis of ceramics.

Despite widespread lactose intolerance during the Neolithic period, there is evidence of dairy being consumed, such as animal bones with kill patterns expected for dairy herds, dairy lipids in ceramic vessels, and dairy proteins in ancient dental calculus or plaque.

Lead author Miranda Evans, a Ph.D. student at Cambridge’s Department of Archaeology, said that the proteomic results showed that the ancient residues closely resembled both the modern cheesemaking residues and cheese itself and not whole milk. This reveals that the people of Sławęcinek practiced cheesemaking or another form of curd-enriching dairy processing.

Evidence of multiple species used for cheesemaking was backed up by the presence of both cow and sheep or goat bones on the site.

Dr. Harry Robson from the Department of Archaeology at the University of York said that these results contribute significantly to our understanding of the use of dairy products by some of the earliest farmers of Central Europe. Furthermore, Dr. Jasmine Lundy from the Department of Archaeology highlighted how complementary lipid and proteomic analyses are, particularly in understanding the use of the ceramic vessel over time. From this, for example, we could see that some techniques waterproof or seal the ceramics, and we could also determine what foods were being produced in them.

Overall, this study provides significant insights into the use of dairy products during the Late Neolithic period in Central Europe and how cheesemaking was practiced using milk from multiple animals. The use of proteomic and lipid-analysis approaches is an innovative and informative method for analyzing ancient residues, and the findings offer valuable contributions to our understanding of the development of food production and consumption in the Neolithic period.

Reference: Evans M, Lundy J, Lucquin A, Hagan R, Kowalski Ł, Wilczyńki J, Bickle P, Adamczak K, Craig OE, Robson HK, Hendy J. Detection of dairy products from multiple taxa in Late Neolithic pottery from Poland: an integrated biomolecular approach. Royal Society Open Science, 2023; 10 (3) DOI: 10.1098/rsos.230124

The 2022 Nobel Prize in Physiology or Medicine was awarded to Svante Pääbo for his work “Relating to the Genomes of Extinct Hominins and Human Evolution”.


Investigating the origin of humanity is one of the primary fields of study of scientists. Groundbreaking with his work in this field, Svante Pääbo achieved many seemingly impossible feats and was awarded the 2022 Nobel Prize in Physiology or Medicine.

Pääbo fully revealed the genome of the extinct Neanderthal (Homo neanderthalensis), as well as the sensational discovery of a previously unknown hominin, Denisovan (Denisova hominins). Furthermore, Pääbo discovered that gene transfer from these extinct hominins to modern humans (Homo sapiens) occurred around 70,000 years ago after migration from Africa. It was these studies that brought Pääbo the Nobel Prize.

Svante Pääbo, nobel
Prof. Dr. Svante Pääbo

Pääbo’s discoveries revolutionised our understanding of human evolution. At the time Homo sapiens migrated from Africa, Eurasia was home to at least two extinct hominin populations. Neanderthals lived in western Eurasia, while Denisovans lived in the continent’s east. It was discovered that during Homo sapiens’ expansion and eastward migration out of Africa, they met and interbred not only with Neanderthals but also with Denisovans. Pääbo’s findings have provided us with the knowledge that ancient gene sequences from our extinct ancestors had an impact on the physiology of modern humans. It is known, for example, that the EPAS1 gene, which provides high-altitude survival advantage and is common among Tibetans today, has Denisovan ancestry. Another example is genes inherited from Neanderthals that influence modern humans’ immune responses to various types of infections.


Pääbo’s research gave rise to a new scientific field known as paleogenomics. Paleogenomics is a branch of science concerned with the reconstruction and analysis of genomic data from extinct species. This discipline essentially seeks to answer the questions of what genetic differences distinguish modern humans from extinct hominins and what distinguishes modern humans.

Homo sapiens is distinguished by its unique ability to create complex cultures, advanced innovation and creativity, and the ability to cross open waters and spread across our planet. Neanderthals were also social creatures with large brains. Despite they have the ability to use tools, they have changed little over hundreds of thousands of years. Pääbo’s research revealed genetic differences between Homo sapiens and our closest extinct relatives. Research in this area is ongoing, and gaps in understanding what makes modern humans unique are being filled.

Major studies of Svante Pääbo

  • Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH, Hansen NF, Durand EY, Malaspinas AS, Jensen JD, Marques-Bonet T, Alkan C, Prüfer K, Meyer M, Burbano HA, Good JM, Schultz R, Aximu-Petri A, Butthof A, Höber B, Höffner B, Siegemund M, Weihmann A, Nusbaum C, Lander ES, Russ C, Novod N, Affourtit J, Egholm M, Verna C, Rudan P, Brajkovic D, Kucan Ž, Gušic I, Doronichev VB, Golovanova LV, Lalueza-Fox C, de la Rasilla M, Fortea J, Rosas A, Schmitz RW, Johnson PLF, Eichler EE, Falush D, Birney E, Mullikin JC, Slatkin M, Nielsen R, Kelso J, Lachmann M, Reich D, Pääbo S. A draft sequence of the Neandertal genome. Science. 2010 May 7;328(5979):710-722. doi: 10.1126/science.1188021.
  • Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Pääbo S. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature. 2010 Apr 8;464(7290):894-7. doi: 10.1038/nature08976.
  • Pääbo S. Molecular cloning of Ancient Egyptian mummy DNA. Nature. 1985 Apr 18-24;314(6012):644-5. doi: 10.1038/314644a0.
  • Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S. Neandertal DNA sequences and the origin of modern humans. Cell. 1997 Jul 11;90(1):19-30. doi: 10.1016/s0092-8674(00)80310-4.
  • Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B, Briggs AW, Stenzel U, Johnson PL, Maricic T, Good JM, Marques-Bonet T, Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler EE, Stoneking M, Richards M, Talamo S, Shunkov MV, Derevianko AP, Hublin JJ, Kelso J, Slatkin M, Pääbo S. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature. 2010 Dec 23;468(7327):1053-60. doi: 10.1038/nature09710.
  • Slon V, Mafessoni F, Vernot B, de Filippo C, Grote S, Viola B, Hajdinjak M, Peyrégne S, Nagel S, Brown S, Douka K, Higham T, Kozlikin MB, Shunkov MV, Derevianko AP, Kelso J, Meyer M, Prüfer K, Pääbo S. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature. 2018 Sep;561(7721):113-116. doi: 10.1038/s41586-018-0455-x.
  • Pinson A, Xing L, Namba T, Kalebic N, Peters J, Oegema CE, Traikov S, Reppe K, Riesenberg S, Maricic T, Derihaci R, Wimberger P, Pääbo S, Huttner WB. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. Science. 2022 Sep 9;377(6611):eabl6422. doi: 10.1126/science.abl6422.

Source: The Nobel Prize in Physiology or Medicine 2022. Nobel Prize Outreach AB 2022. Wed. 12 Oct 2022.